DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS
نویسندگان
چکیده
منابع مشابه
Derivations in semiprime rings and Banach algebras
Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...
متن کاملGeneralized Derivations in Prime Rings and Noncommutative Banach Algebras
Let R be a prime ring of characteristic different from 2, C the extended centroid of R, and δ a generalized derivations of R. If [[δ(x), x], δ(x)] = 0 for all x ∈ R then either R is commutative or δ(x) = ax for all x ∈ R and some a ∈ C. We also obtain some related result in case R is a Banach algebra and δ is either continuous or spectrally
متن کاملA note on derivations in semiprime rings
We prove in this note the following result. Let n > 1 be an integer and let R be an n!torsion-free semiprime ring with identity element. Suppose that there exists an additive mapping D : R→ R such that D(xn) =∑nj=1 xn− jD(x)x j−1is fulfilled for all x ∈ R. In this case, D is a derivation. This research is motivated by the work of Bridges and Bergen (1984). Throughout, R will represent an associ...
متن کاملOn Generalized Derivations of Semiprime Rings
Let F be a commuting generalized derivation, with associated derivation d, on a semiprime ring R. We show that d(x)[y, z] = 0 for all x, y, z ∈ R and d is central. We define and characterize dependent elements of F and investigate a decomposition of R relative to F . Mathematics Subject Classification: 16N60, 16W25
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the Korean Mathematical Society
سال: 2002
ISSN: 1225-1763
DOI: 10.4134/ckms.2002.17.4.607